rtspinfilter abstract.txt

http://www.sainc.com/spintech1/index.htm

Theoretical Analysis of Spin Polarization Effects in InAs/GaSb/AlSb Resonant Tunneling Structures

D. Z.-Y. Ting, X. Cartoixa-Soler, T. C. McGill, D. L. Smith, and J. N. Schulman

Recent theoretical studies suggest the possibility of polarizing elect ron spins by resonant tunneling

- [1], and obtaining spin-polarized current in resonant tunneling hetero structures at zero magnetic field
- [2]. A typical resonant tunneling spin-filtering device structure con sists of double barriers

surrounding an asymmetric quantum well, where quantized states are spin-split by the Rashba effect. In

this work we report our theoretical analysis of spin polarization effects in InAs/GaSb/AlSb resonant

tunneling structures. Heterostructures of InAs/GaSb/AlSb are strong c andidates for pronounced Rashba

spin splittings because of the large spin-orbit interaction in InAs, the availability of both InAs and

GaSb for the construction of highly asymmetric quantum wells, and the presence of a variety (type-I,

type-II staggered, and type-II broken-gap) of interface types. Indeed , our calculations show that it is

possible to obtain rather large Rashba spin splittings in AlSb/InAs/Ga Sb superlattices even in the

absence of a transverse electric field. Furthermore, the non-common a nion InAs/GaSb and InAs/AlSb

heterointerfaces offer opportunities for engineering interface potentials for optimizing Rashba spin

splitting. The presence of the type-II broken-gap band offset also al lows us to fabricate resonant

interband tunnel (RIT) structures, where the quasibound states have opposite k-parallel dispersions to

those in the electrodes. We will report on studies of spin-dependent tunneling in both the intraband

and the interband resonant tunneling structures.

- [1] E. A. de Andrada e Silva and G. C. La Rocca, Phys. Rev. B 59, 1558 3 (1999).
- [2] A. Voskoboynikov, S. S. Lin, C. P. Lee, and O. Tretyak, J. Appl. P hys. 87, 387 (2000).